Nonlinear elliptic p(u)− Laplacian problem with Fourier boundary condition
نویسندگان
چکیده
منابع مشابه
On a Nonlinear Elliptic Boundary Value Problem
Consider a bounded domain G C R (_N>1) with smooth boundary T . Let L be a uniformly elliptic linear differential operator. Let y and ß be two maximal monotone mappings in R. We prove that, when y ? 2 satisfies a certain growth condition, given f £ L (G ) there is u € H (G) such that Lu + y(u) 3 f a.e. on G, and -du/d v e ß(u\ ) a.e. on T, where du/civ is the conormal derivative associated with...
متن کاملA Free Boundary Problem for the Laplacian with Constant Bernoulli-type Boundary Condition
We study a free boundary problem for the Laplace operator, where we impose a Bernoulli-type boundary condition. We show that there exists a solution to this problem. We use A. Beurling’s technique, by defining two classes of suband supersolutions and a Perron argument. We try to generalize here a previous work of A. Henrot and H. Shahgholian. We extend these results in different directions.
متن کاملOn a model boundary value problem for Laplacian with frequently alternating type of boundary condition
Model two-dimensional singular perturbed eigenvalue problem for Laplacian with frequently alternating type of boundary condition is considered. Complete two-parametrical asymptotics for the eigenelements are constructed.
متن کاملTHE ONE PHASE FREE BOUNDARY PROBLEM FOR THE p-LAPLACIAN WITH NON-CONSTANT BERNOULLI BOUNDARY CONDITION
Our objective, here, is to generalize our earlier results on the existence of classical convex solution to a free boundary problem with a Bernoullitype boundary gradient condition and with the p-Laplacian as the governing operator. The main theorems of this paper assert that the exterior and the interior free boundary problem with a Bernoulli law, i.e. with a prescribed pressure a(x) on the “fr...
متن کاملA FREE-BOUNDARY PROBLEM FOR THE EVOLUTION p-LAPLACIAN EQUATION WITH A COMBUSTION BOUNDARY CONDITION
We study the existence, uniqueness and regularity of solutions of the equation ft = ∆pf = div (|Df | p−2 Df) under over-determined boundary conditions f = 0 and |Df | = 1. We show that if the initial data is concave and Lipschitz with a bounded and convex support, then the problem admits a unique solution which exists until it vanishes identically. Furthermore, the free-boundary of the support ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cubo (Temuco)
سال: 2020
ISSN: 0719-0646
DOI: 10.4067/s0719-06462020000100085